The Tongkat Ali

Welcome to our one-stop resource center on Tongkat Ali (Eurycoma Longifolia). All you need to know about Tongkat Ali begins here.

About Tongkat Ali


Tongkat Ali is a herbal root that originates from a plant known as Eurycoma Longifolia that grows mainly in Peninsular Malaysia, Borneo, Indonesia and in small patches in remote regions of Cambodia, Myanmar and Laos. Reaching up to 15 meters in height, Tongkat Ali is found in deep tropical rainforests surrounded by rich biodiversity; often left untouched and often not found harvested in an open field.


The botanical (scientific name) given to Tongkat Ali is Eurycoma Longifolia, which is formed from Greek and Latin words.

In Greek, the word “eurys” originally means broad while “come” means a tufted bush, which describes the plant’s physical attributes. The word Eurycoma refers to the growth habit of its compound leaves that spirals out at the tip of its slender trunk in a large dense rosette.

In Latin, “Longus” means long and Folia refers to the leaves, so the word Longifolia describes the compound leaflets that are often long and slender. 


Tongkat Ali has a rich history in Malaysia, dating back to the 1600s before the rise of the British Empire that fueled global traders by the Gujaratis in the 1800s . Tongkat Ali was used by Malaysians and indigenous to treat diseases and as a natural aphrodisiac. Many believed Tongkat Ali is a symbol of virility, strength and power for primal men.

The word Tongkat Ali means Ali’s stick in the Malay language – a term widely used by 300 million people across various countries in South East Asia. Tongkat Ali is now known globally by more than 5 billion people across the globe.

Tongkat Ali is also known by other names such as ‘Pasak Bumi’ in Indonesia, Cay Ba Binh in Vietnam, Pin Yin: 东革阿里 or Dōng gé ālǐ in China, ‘Longjack’ in the United States or Europe and ‘Malaysian Ginseng’ or `Akar Ali’ by locals.


Tongkat Ali is used as a traditional herbal medicine for centuries by the indigenous (also known as Orang Asli). The traditional approach of drinking boiled freshly-cut roots is widely practiced and used as an aphrodisiac, antibiotic, appetite stimulant and to promote general well-being.

Tongkat Ali’s bark is mostly used as a vermifuge, while the taproots are used to treat high blood pressure, diarrhea, and fever. Meanwhile, the leaves are used for washing itches, while its fruits are still used in curing dysentery by indigenous people.

Tongkat Ali has been a central part of jamu, an ancient Malay medicinal practice and remedy.


Tongkat Ali contains unique bioactive compounds (ingredients), some of which do not exist in any other herbs. This unique bioactive content is widely researched by scientists as it contains medicinal properties and may benefit health in many ways.

Here are the key bioactive compounds found in Tongkat Ali:

  • eurycomanone
  • eurycolactone
  • eurycomalactone
  • quassinoids
  • β-carboline alkaloids
  • canthin-6-one alkaloids
  • triterpene tirucallane
  • squalene derivatives
  • laurycolactone
  • biphenyl neolignan
  • glycosaponin
  • polysaccharide

Tongkat Ali roots contain the highest level of bioactive compounds.

Download a comprehensive literature review of Tongkat Ali and gain more insights.


Tongkat Ali is used as a daily supplement to improve health. Tongkat Ali’s scientifically proven health benefits are clinically tested on humans based on an average daily dose between 200mg to 400mg, with research studies spanning more than two decades.

More research studies have strengthened Tongkat Ali’s efficacy with long-term assessment and more randomized placebo-controlled group studies in recent years, with no reported adverse effects on health.

However, Tongkat Ali should not be viewed or used as a medicinal drug to treat or cure any illnesses or diseases.

For Men’s Libido & Fertility
For Testosterone
  • As a supplement to restore and promote a heathy testosterone level for men from 25 to 75
  • As a supplement to restore and promote a healthy testosterone level for women above 50
  • Daily Dosage : 200mg – 400mg
For Sports & Strength
For Immune System
For Better Mood & Hangovers


Tongkat Ali has stood the test of time. Its 200 years of history attracted world-renowned scientists, researchers and medical experts to validate its health benefits. With more than 100 publications, studies and clinical trials to date, Tongkat Ali is at the center stage being one of the reputable herbal supplements in the market.

Decades of research and development have given birth to quality Tongkat Ali extracts that deliver consistent results and higher gains. This cutting-edge innovation is achieved through a standardized extract method using a combination of hot-water and freeze-dried processes.

Standardized extract enables higher bioactive compounds to be extracted from Tongkat Ali while minimizes molecular degradation that can impact it’s overall efficacy and potency.


Malaysian Tongkat Ali is one of the most functional and versatile herbs that is consumed in modern times with a wide range of applications. Tongkat Ali is used as a functional ingredient in nutritional diets, as a performance ingredient in pre-workout drinks, and taken daily as a dietary supplement.

Functional Ingredient

Tongkat Ali is used as a functional food ingredient in coffee or tea for decades. Learn more about homemade recipes vs. pre-mixed Tongkat Ali coffees.

Performance Ingredient

Tongkat Ali is a key performance ingredient in pre-workout drinks or supplements used by fitness professionals and sports amateurs to deliver a competitive edge.

Dietary Supplement

Tongkat Ali is widely consumed as a dietary supplement by both men and women to revitalize health. Dietary supplements are available mainly in capsule form.

Yellow, Black and Red Tongkat Ali.

There are three types of Tongkat Ali sold in the market today; Yellow Tongkat Ali (Eurycoma Longifolia), Black Tongkat Ali (Polyalthia Bullata) and Red Tongkat Ali (Stema Tuberosa)

Find out the differences, benefits and risks. 

The Tree That Cures Hundred Diseases


According to history, Tongkat Ali was once known as “the tree that cures a hundred diseases” due to its wide range of medicinal properties, which include antimalarial effects; and used widely to treat migraine, fevers, and even arthritis too.

These beliefs and venerated traditions that transcend through time are sending waves to the Western world in recent years.

The latest research findings on Tongkat Ali include anti-HIV effects, anti-cancer effects and immune-boosting properties from increased T-cells and CD4+ cells.

Through research, innovation, and growing clinical tests, Tongkat Ali has now gained mainstream status as a traditional herb that is widely accepted by millions of people.

Learn more about the past, the present, and the future of Tongkat Ali.

Tongkat Ali in 120 seconds.

Demystify Tongkat Ali and learn more about its potential health benefits in 120 seconds.

Watch this video as we present the best fact-based information on Tongkat Ali based on hard science.

Tongkat Ali Beginner's Guide

All you need to know about Tongkat Ali is here. Learn more from fact-based evidence and science.

Tongkat Ali Benefits

There are twelve scientifically-backed health benefits of Tongkat Ali from decades of clinical trials and research studies. Get more insights and learn how Tongkat Ali can promote better healthy living.

Medical Views on Tongkat Ali

Tongkat Ali receives attention from global neurobiologists, urologists, psychonutrionists, andrologists and herbal experts. Gain more insights from experts’ views and opinions on Tongkat Ali.

Tongkat Ali Dosage Guide

Find out how much Tongkat Ali should you take daily and what is the maximum limit you can take. Depending on your age and health objectives, our dosage guide will assist you in optimizing your gains and desired benefits.

How does Tongkat Ali Work?

Tongkat Ali works through its hormone-inducing action by releasing free testosterone from Luteinising Hormone (LH). This works the same for both men and women. Learn more about how Tongkat Ali functions in your body.

Tongkat Ali Extract

Standardized hot-water extraction technology enables the best bio-active ingredients to be extracted from Tongkat Ali roots. Fine quality Tongkat Ali extract delivers higher gains to achieve optimal health benefits.

Tongkat Ali FAQ

Access our comprehensive Frequently Asked Questions (FAQ) and find out the best answers to your specific questions. Seek more clarity in our latest compilation of fact-based evidence and save hours of searching for credible answers.

Tongkat Ali Brands

Forget about Amazon reviews.  Find the best Tongkat Ali brands in each country and compare prices with ease. There are a handful of reputable Tongkat Ali brands that you can trust. Shop with confidence.

Tongkat Ali Shops

With 5,000 Tongkat Ali products to choose from, there are few places you can find reputable and trustworthy Tongkat Ali stores. Find out hidden gems in top stores to help you find the best Tongkat Ali products.

Rare & Finest Quality

Premium Tongkat Ali products are produced from handpicked roots from deep Malaysian rainforests, away from human contamination and pollutants.

  1. Bodeker G., Ong C.K. WHO Global Atlas of Traditional, Complementary and Alternative Medicine.Volume 1 World Health Organization; Geneva, Switzerland: 2005. [Google Scholar]
  2. WHO . Traditional Medicine Strategy 2002–2005.World Health Organization; Geneva, Switzerland: 2002. [Google Scholar]
  3. Lancet J. Herbal remedies and the bias against Ayurveda. Curr. Sci. 2003;84:1165–1166. [Google Scholar]
  4. Duraz A.Y., Khan S.A. Knowledge, attitudes and awareness of community pharmacists towards the use of herbal medicines in muscat region. Oman Med. J. 2011;26 doi: 10.5001/omj.2011.115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  5. Patwardhan B., Vaidya A.D., Chorghade M. Ayurveda and natural products drug discovery. Curr. Sci. Bangalore. 2004;86:789–799. [Google Scholar]
  6. Fabricant D.S., Farnsworth N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001;109:69–75. doi: 10.1289/ehp.01109s169. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  7. Bhat R., Karim A. Tongkat Ali (Eurycoma longifoliaJack): A review on its ethnobotany and pharmacological importance. Fitoterapia. 2010;81:669–679. doi: 10.1016/j.fitote.2010.04.006. [PubMed] [CrossRef] [Google Scholar]
  8. AbdRahman K., Niiyama K., Azizi R., Appanah S., Iida S. Species assembly and site preference of tree species in a primary seraya-ridge forest of Peninsular Malaysia. J. Trop. For. Sci. 2002;14:287–303. [Google Scholar]
  9. Sulaiman B., Jaafar A., Mansor M. Some medicinal plants from Sungai Kinchin, Pahang, Malaysia. Malay. Nat. J. 1990;43:267. [Google Scholar]
  10. Chua G., Koh B., Lau S., Lee S., Mathias M., Turner I., Yong J. The nutrient status of the plateau heath forest on Gunung Keriong, Pahang, Peninsular Malaysia. J. Trop. For. Sci. 1995;8:240–246. [Google Scholar]
  11. Chua L., Kamarudin S., Markandan M., Hamidah M. A preliminary checklist of vascular plants from the Machinchang Range, Pulau Langkawi, Peninsular Malaysia. Malay. Nat. J. 2005;57:155–172. [Google Scholar]
  12. Ang H., Ikeda S., Gan E. Evaluation of the potency activity of aphrodisiac in Eurycoma longifoliaJack. Phytother. Res. 2001;15:435–436. doi: 10.1002/ptr.968. [PubMed] [CrossRef] [Google Scholar]
  13. Kulip J. Medicinal plants of Sabah, Malaysia: Potential for agroforestry. JIRCAS Work. Rep. 2009;60:47–48. [Google Scholar]
  14. Adenan M.I. Opportunities on the planting of medicinal and herbal plants in Malaysia. Planter. 1999;74:339–342. [Google Scholar]
  15. Mohidin A., Tajudin M.H., YuShyun C., Mohtar M., Subramaniam V., Yunos N. Sustainable production of medicinal plants through cultivation: The golden hope experience, towards modernisation of research and technology in herbal industries; Proceedings of the Seminar on Medicinal and Aromatic Plants; Selangor Darul Ehsan, Malaysia. 24–25 July 2001; Kuala Lumpur, Malaysia: Forest Research Institute Malaysia (FRIM); 2002. pp. 22–26. [Google Scholar]
  16. Group H.M.R. Compendium of Medicinal Plants used in Malaysia. Kuala Lumpur Instit. Med. Res. Malays. 2002;345 [Google Scholar]
  17. Tambi M., Kadir A. Eurycoma Longifoliajack: A potent adaptogen in the form of water-soluble extract with the effect of maintaining men’s health. Asian J. Androl. 2006;8:49–50. [Google Scholar]
  18. Keng H. Orders and Families of Malayan Seed Plants.Singapore University Press; Kent Ridge, Singapore: 1978. [Google Scholar]
  19. Keng H., Keng R.S.L. The Concise Flora of Singapore: GYMNOSPERMS and Dicotyledons.Singapore University Press; Kent Ridge, Singapore: 1990. [Google Scholar]
  20. Goh S.H., Chuah C., Mok J., Soepadmo E. Malaysian Medicinal Plants for the Treatment of Cardiovascular Diseases.Pelanduk Publications; Petaling Jaya, Malaysia: 1995. [Google Scholar]
  21. Osman A., Jordan B., Lessard P.A., Muhammad N., Haron M.R., Riffin N.M., Sinskey A.J., Rha C., Housman D.E. Genetic diversity of Eurycoma longifolia inferred from single nucleotide polymorphisms. Plant Physiol. 2003;131:1294–1301. doi: 10.1104/pp.012492. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  22. Tnah L.H., Lee C.T., Lee S.L., Ng K.K.S., Ng C.H., San Hwang S. Microsatellite markers of an important medicinal plant, Eurycoma longifolia(Simaroubaceae), for DNA profiling. Am. J. Bot. 2011;98:e130–e132. doi: 10.3732/ajb.1000469. [PubMed] [CrossRef] [Google Scholar]
  23. Razi A.R.M., Abdul-Aziz A., Alwee S.S.B.S., Aziz R. Relationships between Malaysians Cultivars of Tongkat Ali (Eurycoma LongifoliaJack) Obtained through RAPD Analysis. Int. J. Biotechnol. Well. Ind. 2013;2:45–50. [Google Scholar]
  24. Aziz S., Akeng G., Kandasamy K. Induction of somatic embryos from cotyledonary tissue of Tongkat Ali (Eurycoma longifoliaJ. Trop. Med Plants. 2000;1:53–59. [Google Scholar]
  25. Danial M., Keng C.L., Alwee S.S.R.S., Subramaniam S. Seed histology of recalcitrant Eurycoma longifoliaplants during germination and its beneficial attribute for hairy roots production. J. Med. Plants Res. 2005;5:93–98. [Google Scholar]
  26. Hasnida H., Aziah M., Salbiah M., Fadhilah Z., Haliza I., Mohamed A.H., Parlan I.H., Ibrahim S., Safiah Yusmah M., Muhammed Azmi M. Multiplication of Shoots from in Vitro Germinated Seedlings of Eurycoma longifoliaand Aquilaria malaccensis, tropical forestry research in the new millennium: Meeting demands and challenges; Proceedings of the International Conference on Forestry and Forest Products Research (CFFPR 2001); Kuala Lumpur, Malaysia. 1–3 October 2001; Kuala Lumpur, Malaysia: Forest Research Institute Malaysia (FRIM); 2001. pp. 269–276. [Google Scholar]
  27. Hussein S., Ibrahim R., Kiong A.L.P. Adventitious shoots regeneration from root and stem explants of Eurycoma longifoliaJack-an important tropical medicinal plants. Int. J. Agric. Res. 2006;1:183–193. [Google Scholar]
  28. Hussein S., Ibrahim R., Kiong A.L.P., Daud S.K. Micropropagation of Eurycoma longifoliaJack via formation of somatic embryogenesis. Asian J. Plant Sci. 2005;4:472–485. [Google Scholar]
  29. Mahmood M., Normi R., Subramaniam S. Optimization of Suitable Auxin Application in a Recalcitrant Woody Forest Plant of Eurycoma Longifolia(Tongkat Ali) for Callus Inducation. Afr. J. Biotechnol. 2010;9:8417–8428. [Google Scholar]
  30. Siregar L., Keng C. In vitroshoot organogenesis of Eurycoma longifoliaPlanter. 2002;78:289–300. [Google Scholar]
  31. Sobri H., Marziah M., Azizol A., YuShyun C., Mohtar M., Subramaniam V., Yunos N. Tissue Culture of Tongkat Ali (Eurycoma longifolia) for Mass Production, towards modernisation of research and technology in herbal industries; Proceedings of the Seminar on Medicinal and Aromatic Plants; Selangor Darul Ehsan, Malaysia. 24–25 July 2001; Selangor Darul Ehsan, Malaysia: Forest Research Institute Malaysia (FRIM); 2002. pp. 18–21. [Google Scholar]
  32. Ling A.P.K., Phua G.A.T., Tee C.S., Hussein S. Optimization of protoplast isolation protocols from callus of Eurycoma longifoliaJ. Med. Plants Res. 2010;4:1778–1785. [Google Scholar]
  33. Lulu T., Park S.Y., Ibrahim R., Paek K.Y. Production of biomass and bioactive compounds from adventitious roots by optimization of culturing conditions of Eurycoma longifoliain balloon-type bubble bioreactor system. J. Biosci. Bioeng. 2015;119:712–717. doi: 10.1016/j.jbiosc.2014.11.010. [PubMed] [CrossRef] [Google Scholar]
  34. Jamal J.A. Malay traditional medicine. Tech. Monit. 2006;1:37–49. [Google Scholar]
  35. Jiwajinda S., Santisopasri V., Murakami A., Hirai N., Ohigashi H. Quassinoids from Eurycoma longifoliaas plant growth inhibitors. Phytochemistry. 2001;58:959–962. doi: 10.1016/S0031-9422(01)00333-8. [PubMed] [CrossRef] [Google Scholar]
  36. Kuo P.C., Damu A.G., Lee K.H., Wu T.S. Cytotoxic and antimalarial constituents from the roots of Eurycoma longifolia. Biorg. Med. Chem. 2004;12:537–544. doi: 10.1016/j.bmc.2003.11.017. [PubMed] [CrossRef] [Google Scholar]
  37. Hussein S., Ibrahim R., LingPick K. A summary of reported chemical constituents and medicinal uses of Eurycoma longifolia. J. Trop. Med. Plants. 2007;8:103–110. [Google Scholar]
  38. Chan K., Lee S., Sam T., Han B. A quassinoid glycoside from the roots of Eurycoma longifoliaPhytochemistry. 1989;28:2857–2859. doi: 10.1016/S0031-9422(00)98108-1. [CrossRef] [Google Scholar]
  39. Darise M., Kohda H., Mizutani K., Tanaka O. Eurycomanone and eurycomanol, quassinoids from the roots of Eurycoma longifoliaPhytochemistry. 1982;21:2091–2093. doi: 10.1016/0031-9422(82)83050-1. [CrossRef] [Google Scholar]
  40. Fiaschetti G., Grotzer M., Shalaby T., Castelletti D., Arcaro A. Quassinoids: From traditional drugs to new cancer therapeutics. Curr. Med. Chem. 2010;18:316–328. doi: 10.2174/092986711794839205. [PubMed] [CrossRef] [Google Scholar]
  41. Grieco P.A., Morre D.M. Mode of action of the anticancer quassinoids—Inhibition of the plasma membrane NADH oxidase. Life Sci. 1998;63:595–604. [PubMed] [Google Scholar]
  42. Miyake K., Tezuka Y., Awale S., Li F., Kadota S. Quassinoids from Eurycoma longifoliaJ. Nat. Prod. 2009;72:2135–2140. doi: 10.1021/np900486f. [PubMed] [CrossRef] [Google Scholar]
  43. Mahfudh N., Pihie A.H.L. Eurycomanone induces apoptosis through the up-regulation of p53 in human cervical carcinoma cells. J. Cancer Mol. 2008;4:109–115. [Google Scholar]
  44. Ang H.H., Hitotsuyanagi Y., Takeya K. Eurycolactones A–C, novel quassinoids from Eurycoma longifoliaTetrahedron Lett. 2000;41:6849–6853. doi: 10.1016/S0040-4039(00)01159-X. [CrossRef] [Google Scholar]
  45. Tran T.V.A., Malainer C., Schwaiger S., Atanasov A.G., Heiss E.H., Dirsch V.M., Stuppner H. NF-κB Inhibitors from Eurycoma longifoliaJ. Nat. Prod. 2014;77:483–488. doi: 10.1021/np400701k. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  46. Athimulam A., Kumaresan S., Foo D.C.Y., Sarmidi M.R., Aziz R. Modelling and Optimization of Eurycoma longifoliaWater Extract Production. Food Bioprod. Process. 2006;84:139–149. doi: 10.1205/fbp.06004. [CrossRef] [Google Scholar]
  47. Chua L.S., Amin N.A.M., Neo J.C.H., Lee T.H., Lee C.T., Sarmidi M.R., Aziz R.A. LC-MS/MS-based metabolites of Eurycoma longifolia(Tongkat Ali) in Malaysia (Perak and Pahang) J. Chromatogr. B. 2011;879:3909–3919. doi: 10.1016/j.jchromb.2011.11.002. [PubMed] [CrossRef] [Google Scholar]
  48. Chan K., Lee S., Sam T., Tan S., Noguchi H., Sankawa U. 13β,18-dihydroeurycomanol, a quassinoid from Eurycoma longifoliaPhytochemistry. 1991;30:3138–3141. doi: 10.1016/S0031-9422(00)98272-4. [CrossRef] [Google Scholar]
  49. Chan K., Iitaka Y., Noguchi H., Sugiyama H., Saito I., Sankawa U. 6α-Hydroxyeurycomalactone, a quassinoid from Eurycoma longifoliaPhytochemistry. 1992;31:4295–4298. doi: 10.1016/0031-9422(92)80461-M. [CrossRef] [Google Scholar]
  50. Tada H., Yasuda F., Otani K., Doteuchi M., Ishihara Y., Shiro M. New antiulcer quassinoids from Eurycoma longifoliaEur. J. Med. Chem. 1991;26:345–349. doi: 10.1016/0223-5234(91)90069-Y. [CrossRef] [Google Scholar]
  51. Park S., Nhiem N.X., Van Kiem P., Van Minh C., Tai B.H., Kim N., Yoo H.H., Song J.H., Ko H.J., Kim S.H. Five new quassinoids and cytotoxic constituents from the roots of Eurycoma longifoliaBioorg. Med. Chem. Lett. 2014;24:3835–3840. doi: 10.1016/j.bmcl.2014.06.058. [PubMed] [CrossRef] [Google Scholar]
  52. Meng D., Li X., Han L., Zhang L., An W., Li X. Four new quassinoids from the roots of Eurycoma longifoliaJack. Fitoterapia. 2014;92:105–110. doi: 10.1016/j.fitote.2013.10.009. [PubMed] [CrossRef] [Google Scholar]
  53. Itokawa H., Kishi E., Morita H., Takeya K., Iitaka Y. Eurylene, a new squalene-type triterpene from Eurycoma longifoliaTetrahedron Lett. 1991;32:1803–1804. doi: 10.1016/S0040-4039(00)74334-6. [CrossRef] [Google Scholar]
  54. Morita H., Kishi E., Takeya K., Itokawa H., Iitaka Y. Squalene derivatives from Eurycoma longifoliaPhytochemistry. 1993;34:765–771. doi: 10.1016/0031-9422(93)85356-V. [CrossRef] [Google Scholar]
  55. Morita H., Kishi E., Takeya K., Itokawa H. Biphenylneolignans from wood of Eurycoma longifoliaPhytochemistry. 1992;31:3993–3995. doi: 10.1016/S0031-9422(00)97570-8. [CrossRef] [Google Scholar]
  56. Mitsunaga K., Koike K., Tanaka T., Ohkawa Y., Kobayashi Y., Sawaguchi T., Ohmoto T. Canthin-6-one alkaloids from Eurycoma longifoliaPhytochemistry. 1994;35:799–802. doi: 10.1016/S0031-9422(00)90609-5. [CrossRef] [Google Scholar]
  57. Choo C.Y., Chan K.L. High performance liquid chromatography analysis of canthinone alkaloids from Eurycoma longifoliaPlanta Med. 2002;68:382–384. doi: 10.1055/s-2002-26745. [PubMed] [CrossRef] [Google Scholar]
  58. Chan K.L., Choo C.Y., Morita H., Itokawa H. High performance liquid chromatography in phytochemical analysis of Eurycoma longifoliaPlanta Med. 1998;64:741–745. doi: 10.1055/s-2006-957570. [PubMed] [CrossRef] [Google Scholar]
  59. Udani J.K., George A.A., Musthapa M., Pakdaman M.N., Abas A. Effects of a proprietary freeze-dried water extract of Eurycoma longifolia(Physta) and Polygonum minus on sexual performance and well-being in men: A randomized, double-blind, placebo-controlled study. Evid. Based Complement. Altern. Med. 2014 doi: 10.1155/2014/179529. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  60. Chan K.L., O’Neill M.J., Phillipson J.D., Warhurst D.C. Plants as Sources of Antimalarial Drugs. Part 31 Eurycoma longifoliaPlanta Med. 1986;52:105–107. doi: 10.1055/s-2007-969091. [PubMed] [CrossRef] [Google Scholar]
  61. Kardono L.B., Angerhofer C.K., Tsauri S., Padmawinata K., Pezzuto J.M., Kinghorn A.D. Cytotoxic and antimalarial constituents of the roots of Eurycoma longifoliaJ. Nat. Prod. 1991;54:1360–1367. doi: 10.1021/np50077a020. [PubMed] [CrossRef] [Google Scholar]
  62. Low B.S., Teh C.H., Yuen K.H., Chan K.L. Physico-chemical effects of the major quassinoids in a standardized Eurycoma longifoliaextract (Fr 2) on the bioavailability and pharmacokinetic properties, and their implications for oral antimalarial activity. Nat. Prod. Commun. 2011;6:337–341. [PubMed] [Google Scholar]
  63. Wernsdorfer W.H., Ismail S., Chan K.L., Congpuong K., Wernsdorfer G. Activity of Eurycoma longifoliaroot extract against Plasmodium falciparum in vitroWien. Klinische Wochenschr. 2009;121:23–26. doi: 10.1007/s00508-009-1230-7. [PubMed] [CrossRef] [Google Scholar]
  64. Ang H.H., Chan K.L., Mak J.W. Effect of 7-day daily replacement of culture medium containing Eurycoma longifoliaJack constituents on the Malaysian Plasmodium falciparum isolates. J. Ethnopharmacol. 1995;49:171–175. doi: 10.1016/0378-8741(95)01321-0. [PubMed] [CrossRef] [Google Scholar]
  65. Low B.S., Ng B.H., Choy W.P., Yuen K.H., Chan K.L. Bioavailability and pharmacokinetic studies of eurycomanone from Eurycoma longifoliaPlanta Med. 2005;71:803–807. doi: 10.1055/s-2005-871259. [PubMed] [CrossRef] [Google Scholar]
  66. Ang H.H., Chan K.L., Mak J.W. In vitroantimalarial activity of quassinoids from Eurycoma longifolia against Malaysian chloroquine-resistant Plasmodium falciparum isolates. Planta Med. J. Med. Plant Res. 1995;61:177–177. doi: 10.1055/s-2006-958042. [PubMed] [CrossRef] [Google Scholar]
  67. Darise M., Kohda H., Mizutani K., Tanaka O. Revision of configuration of the 12-hydroxyl group of eurycomanone and eurycomanol, quassinoids from Eurycoma longifoliaPhytochemistry. 1983;22 doi: 10.1016/S0031-9422(00)84053-4. [CrossRef] [Google Scholar]
  68. Wong P.F., Cheong W.F., Shu M.H., Teh C.H., Chan K.L., AbuBakar S. Eurycomanone suppresses expression of lung cancer cell tumor markers, prohibitin, annexin 1 and endoplasmic reticulum protein 28. Phytomedicine. 2012;19:138–144. doi: 10.1016/j.phymed.2011.07.001. [PubMed] [CrossRef] [Google Scholar]
  69. Itokawa H., Qin X.-R., Morita H., Takeya K. C18 and C19 quassinoids from Eurycoma longifoliaJ. Nat. Prod. 1993;56:1766–1771. doi: 10.1021/np50100a016. [CrossRef] [Google Scholar]
  70. Ang H., Lee K. Effect of Eurycoma longifoliaJack on orientation activities in middle-aged male rats. Fundam. Clin. Pharmacol. 2002;16:479–483. doi: 10.1046/j.1472-8206.2002.00106.x. [PubMed] [CrossRef] [Google Scholar]
  71. Bedir E., Abou-Gazar H., Ngwendson J.N., Khan I.A. Eurycomaoside: A new quassinoid-type glycoside from the roots of Eurycoma longifoliaChem. Pharm. Bull. 2003;51:1301–1303. doi: 10.1248/cpb.51.1301. [PubMed] [CrossRef] [Google Scholar]
  72. Morita H., Kishi E., Takeya K., Itokawa H., Iitaka Y. Highly oxygenated quassinoids from Eurycoma longifoliaPhytochemistry. 1993;33:691–696. doi: 10.1016/0031-9422(93)85475-7. [CrossRef] [Google Scholar]
  73. Jiwajinda S., Santisopasri V., Murakami A., Kawanaka M., Kawanaka H., Gasquet M., Eilas R., Balansard G., Ohigashi H. In vitroanti-tumor promoting and anti-parasitic activities of the quassinoids from Eurycoma longifolia, a medicinal plant in Southeast Asia. J. Ethnopharmacol. 2002;82:55–58. doi: 10.1016/S0378-8741(02)00160-5. [PubMed] [CrossRef] [Google Scholar]
  74. Ang H.H., Hitotsuyanagi Y., Fukaya H., Takeya K. Quassinoids from Eurycoma longifoliaPhytochemistry. 2002;59:833–837. doi: 10.1016/S0031-9422(01)00480-0. [PubMed] [CrossRef] [Google Scholar]
  75. Itokawa H., Kishi E., Morita H., Takeya K. Cytotoxic quassinoids and tirucallane-type triterpenes from the woods of Eurycoma longifoliaChem. Pharm. Bull. 1992;40:1053–1055. doi: 10.1248/cpb.40.1053. [CrossRef] [Google Scholar]
  76. Kuo P.C., Shi L.S., Damu A.G., Su C.R., Huang C.H., Ke C.H., Wu J.B., Lin A.J., Bastow K.F., Lee K.H. Cytotoxic and antimalarial β-carboline alkaloids from the roots of Eurycoma longifoliaJ. Nat. Prod. 2003;66:1324–1327. doi: 10.1021/np030277n. [PubMed] [CrossRef] [Google Scholar]
  77. Miyake K., Tezuka Y., Awale S., Li F., Kadota S. Canthin-6-one alkaloids and a tirucallanoid from Eurycoma longifoliaand their cytotoxic activity against a human HT-1080 fibrosarcoma cell line. Nat. Prod. Commun. 2010;5:17–22. [PubMed] [Google Scholar]
  78. Lin L.C., Peng C.Y., Wang H.S., Lee K.W., Wang P.S. Reinvestigation of the chemical constituents of Eurycoma longifoliaChin. Pharm. J. 2001;53:97–106. [Google Scholar]
  79. Souza-Almeida E.S., Niero R., Clasen B.K., Balogun S.O., Oliveira-Martins D.T. Pharmacological mechanisms underlying the anti-ulcer activity of methanol extract and canthin-6-one of Simaba ferrugineaA. St-Hil. in animal models. J. Ethnopharmacol. 2011;134:630–636. doi: 10.1016/j.jep.2011.01.009. [PubMed] [CrossRef] [Google Scholar]
  80. Donkwe S.M.M., Happi E.N., Wansi J.D., Lenta B.N., Devkota K.P., Neumann B., Stammler H.-G., Sewald N. Oxidative Burst Inhibitory and Cytotoxic Activity of Constituents of the Fruits of Odyendyea gabonensisPlanta Med. 2012;78:1949–1956. [PubMed] [Google Scholar]
  81. Jiang M.X., Zhou Y.J. Canthin-6-one alkaloids from Picrasma quassioidesand their cytotoxic activity. J. Asian Nat. Prod. Res. 2008;10:1009–1012. doi: 10.1080/10286020802277956. [PubMed] [CrossRef] [Google Scholar]
  82. Varghese C., Ambrose C., Jin S., Lim Y., Keisaban T. Antioxidant and anti-inflammatory activity of Eurycoma longifoliaJack. A traditional medicinal plant in Malaysia. Int. J. Pharm. Sci. Nanotechnol. 2013;5:1875–1878. [Google Scholar]
  83. Morimoto Y., Iwai T., Yoshimura T., Kinoshita T. Diastereoselective two-directional synthesis and cation transport ability of the central tristetrahydrofuranyl unit of meso polyether glabrescol as naturally occurring podand. Bioorg. Med. Chem. Lett. 1998;8:2005–2010. doi: 10.1016/S0960-894X(98)00347-3. [PubMed] [CrossRef] [Google Scholar]
  84. Hioki H., Yoshio S., Motosue M., Oshita Y., Nakamura Y., Mishima D., Fukuyama Y., Kodama M., Ueda K., Katsu T. Enantioselective Total Synthesis of Eurylene, 14-Deacetyl Eurylene, and Their 11-Epimers: The Relation between Ionophoric Nature and Cytotoxicity. Org. Lett. 2004;6:961–964. doi: 10.1021/ol036471i. [PubMed] [CrossRef] [Google Scholar]
  85. Oei-Koch A., Kraus L. Inhaltsstoffe von Eurycoma longifoliaJack. I. Sterols, saponine. Plant Med. 1978 doi: 10.1055/s-0028-1097465. [CrossRef] [Google Scholar]
  86. Teh C.H., Abdulghani M., Morita H., Shiro M., Hussin A.H., Chan K.L. Comparative X-Ray and Conformational Analysis of a New Crystal of 13α,21-Dihydroeurycomanone with Eurycomanone from Eurycoma longifoliaand Their Anti-Estrogenic Activity Using the Uterotrophic Assay. Planta Med. 2011;77:128–132. doi: 10.1055/s-0030-1250159. [PubMed] [CrossRef] [Google Scholar]
  87. Siregar L.A.M., Keng C.L., Lim B.P. Effects of medium constituents on growth and canthinone accumulation in cell suspension cultures of Eurycoma longifoliaJack. HAYATI J. Biosci. 2009;16:69–77. doi: 10.4308/hjb.16.2.69. [CrossRef] [Google Scholar]
  88. Mahmud Siregar L.A., Peng-Lim B., Lai-Keng C. Effect of cell source and pH of culture medium on the production of canthin-6-one alkaloids from the cell cultures of Tongkat Ali (Eurycoma longifoliaJack) J. Plant Biotechnol. 2004;6:125–130. [Google Scholar]
  89. Maziah M., Rosli N. The Production of 9-methoxycanthin-6-one from Callus Cultures of (Eurycoma longifoliaJack) Tongkat Ali. In: (Methods in Molecular Biology) Saxena P.K., Jain S.M., editors. Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants. Volume 547. Humana Press; New York, NY, USA: 2009. pp. 359–369. [Google Scholar]
  90. Kuo P.C., Damu A.G., Wu T.S. Characterization of the water soluble fraction from the root extract of Eurycoma longifolia. Chin. Pharm. J. 2003;55:257–265. [Google Scholar]
  91. Asiah O., Nurhanan M., Mohd Ilham A. Determination of bioactive peptide (4.3 kDa) as an aphrodisiac marker in six Malaysian plants. J. Trop. For. Sci. 2007;19:61–63. [Google Scholar]
  92. Lugnataweepon I., Pleuktivorapongkul A., Sirithunyalug J., Leesawat P., Charumanee S., Yotsawimonwat S. Effects of herbal powder composition on flow and compaction properties; Proceedings of the Kasetsart University Annual Conference; Kasetsart, Thailand. 1–4 February 2011; Bangkok, Thailand: Kasetsart University; 2011. pp. 113–120. [Google Scholar]
  93. Rauh M., Groschl M., Rascher W. Simultaneous quantification of ghrelin and desacyl-ghrelin by liquid chromatography-tandem mass spectrometry in plasma, serum, and cell supernatants. Clin. Chem. 2007;53:902–910. doi: 10.1373/clinchem.2006.078956. [PubMed] [CrossRef] [Google Scholar]
  94. Tareke E., Bowyer J.F., Doerge D.R. Quantification of rat brain neurotransmitters and metabolites using liquid chromatography/electrospray tandem mass spectrometry and comparison with liquid chromatography/electrochemical detection. Rapid Commun. Mass Spectrom. 2007;21:3898–3904. doi: 10.1002/rcm.3295. [PubMed] [CrossRef] [Google Scholar]
  95. Biesaga M., Pyrzynska K. Liquid chromatography/tandem mass spectrometry studies of the phenolic compounds in honey. J. Chromatogr. 2009;1216:6620–6626. doi: 10.1016/j.chroma.2009.07.066. [PubMed] [CrossRef] [Google Scholar]
  96. Canabate-Diaz B., Segura Carretero A., Fernandez-Gutierrez A., Belmonte Vega A., Garrido Frenich A., Martínez Vidal J., Duran Martos J. Separation and determination of sterols in olive oil by HPLC-MS. Food Chem. 2007;102:593–598. doi: 10.1016/j.foodchem.2006.05.038. [CrossRef] [Google Scholar]
  97. Fabre N., Rustan I., de Hoffmann E., Quetin-Leclercq J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001;12:707–715. doi: 10.1016/S1044-0305(01)00226-4. [PubMed] [CrossRef] [Google Scholar]
  98. Guo Z., Vangapandu S., Sindelar R., Walker L., Sindelar R. Biologically active quassinoids and their chemistry: Potential leads for drug design. Curr. Med. Chem. 2005;12:173–190. doi: 10.2174/0929867053363351. [PubMed] [CrossRef] [Google Scholar]
  99. Curcino Vieira I.J., Braz-Felho R. Quassinoids: Structural diversity, biological activity and synthetic studies. Stud. Nat. Prod. Chem. 2006;33:433–492. [Google Scholar]
  100. Tan S., Yuen K.H., Chan K.L. HPLC analysis of plasma 9-methoxycanthin-6-one from Eurycoma longifoliaand its application in a bioavailability/pharmacokinetic study. Planta Med. 2002;68:355–358. doi: 10.1055/s-2002-26751. [PubMed] [CrossRef] [Google Scholar]
  101. Teh C.H., Murugaiyah V., Chan K.L. Developing a validated liquid chromatography-mass spectrometric method for the simultaneous analysis of five bioactive quassinoid markers for the standardization of manufactured batches of Eurycoma longifoliaJack extract as antimalarial medicaments. J. Chromatogr. 2011;1218:1861–1877. doi: 10.1016/j.chroma.2011.02.014. [PubMed] [CrossRef] [Google Scholar]
  102. Han Y.M., Jang M., Kim I.S., Kim S.H., Yoo H.H. Simultaneous quantitation of six major quassinoids in Tongkat Ali dietary supplements by liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2015;38:2260–2266. doi: 10.1002/jssc.201500207. [PubMed] [CrossRef] [Google Scholar]
  103. Said M.M., Gibbons S., Moffat A.C., Zloh M. Rapid detection of sildenafil analogue in Eurycoma longifoliaproducts using a new two-tier procedure of the near infrared (NIR) spectra database. Food Chem. 2014;158:296–301. doi: 10.1016/j.foodchem.2014.02.125. [PubMed] [CrossRef] [Google Scholar]
  104. Sharlip I.D., Jarow J.P., Belker A.M., Lipshultz L.I., Sigman M., Thomas A.J., Schlegel P.N., Howards S.S., Nehra A., Damewood M.D. Best practice policies for male infertility. Fertil. Steril. 2002;77:873–882. doi: 10.1016/S0015-0282(02)03105-9. [PubMed] [CrossRef] [Google Scholar]
  105. Brugh V.M., III, Lipshultz L.I. Male factor infertility: Evaluation and management. Med. Clin. N. Am. 2004;88:367–385. doi: 10.1016/S0025-7125(03)00150-0. [PubMed] [CrossRef] [Google Scholar]
  106. Hirsh A. Male subfertility. BMJ. 2003;327:669–672. doi: 10.1136/bmj.327.7416.669. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  107. Mahdi A., Bano F., Singh R., Singh R., Siddiqui M., Hasan M. Seminal plasma superoxide dismutase and catalase activities in infertile men. Med. Sci. Res. 1999;27:201–203. [Google Scholar]
  108. Cooper T.G., Noonan E., Von Eckardstein S., Auger J., Baker H.G., Behre H.M., Haugen T.B., Kruger T., Wang C., Mbizvo M.T. World Health Organization reference values for human semen characteristics. Hum. Reprod. Update. 2010;16:231–245. doi: 10.1093/humupd/dmp048. [PubMed] [CrossRef] [Google Scholar]
  109. Bano F., Singh R., Singh R., Siddiqui M., Mahdi A. Seminal plasma lipid peroxide levels in infertile men. J. Endocrinol. Reprod. 1999;3:20–28. [Google Scholar]
  110. Sikka S.C. Relative impact of oxidative stress on male reproductive function. Curr. Med. Chem. 2001;8:851–862. doi: 10.2174/0929867013373039. [PubMed] [CrossRef] [Google Scholar]
  111. Low B.S., Das P.K., Chan K.L. Standardized quassinoid-rich Eurycoma longifoliaextract improved spermatogenesis and fertility in male rats via the hypothalamic-pituitary-gonadal axis. J. Ethnopharmacol. 2013;145:706–714. doi: 10.1016/j.jep.2012.11.013. [PubMed] [CrossRef] [Google Scholar]
  112. Low B.S., Choi S.B., Wahab H.A., Das P.K., Chan K.L. Eurycomanone, the major quassinoid in Eurycoma longifoliaroot extract increases spermatogenesis by inhibiting the activity of phosphodiesterase and aromatase in steroidogenesis. J. Ethnopharmacol. 2013;149:201–207. doi: 10.1016/j.jep.2013.06.023. [PubMed] [CrossRef] [Google Scholar]
  113. Chen Y., Phang W.M., Mu A.K.W., Chan C.K., Low B.S., Sasidharan S., Chan K.L. Decreased expression of alpha-2-HS glycoprotein in the sera of rats treated with Eurycoma longifoliaextract. Front. Pharmacol. 2015;6 doi: 10.3389/fphar.2015.00211. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  114. Ismail S.B., Wan Mohammad W.M.Z., George A., Nik Hussain N.H., Musthapa Kamal Z.M., Liske E. Randomized clinical trial on the Use of PHYSTA freeze-dried water extract of Eurycoma longifoliafor the improvement of quality of life and sexual well-being in Men. Evid. Based Complement. Altern. Med. 2012 doi: 10.1155/2012/429268. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  115. Chan K.L., Low B.S., Teh C.H., Das P.K. The effect of Eurycoma longifoliaon sperm quality of male rats. Nat. Prod. Commun. 2009;4:1331–1336. [PubMed] [Google Scholar]
  116. Ang H., Ngai T. Aphrodisiac evaluation in non-copulator male rats after chronic administration of Eurycoma longifoliaJack. Fundam. Clin. Pharmacol. 2001;15:265–268. doi: 10.1046/j.1472-8206.2001.00038.x. [PubMed] [CrossRef] [Google Scholar]
  117. Chen C.K., Mohamad W.M.Z.W., Ooi F.K., Ismail S.B., Abdullah M.R., George A. Supplementation of Eurycoma longifoliaJack Extract for 6 Weeks Does Not Affect Urinary Testosterone: Epitestosterone Ratio, Liver and Renal Functions in Male Recreational Athletes. Int. J. Prev. Med. 2014;5:728–733. [PMC free article] [PubMed] [Google Scholar]
  118. Ang H., Ngai T., Tan T. Effects of Eurycoma longifoliaJack on sexual qualities in middle aged male rats. Phytomedicine. 2003;10:590–593. doi: 10.1078/094471103322331881. [PubMed] [CrossRef] [Google Scholar]
  119. Wahab N.A., Mokhtar N.M., Halim W.N.H.A., Das S. The effect of Eurycoma longifoliaJack on spermatogenesis in estrogen-treated rats. Clinics. 2010;65:93–98. doi: 10.1590/S1807-59322010000100014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  120. Tambi M., Imran M.K. Eurycoma longifoliaJack in managing idiopathic male infertility. Asian J. Androl. 2010;12:376–380. doi: 10.1038/aja.2010.7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  121. Erasmus N., Solomon M., Fortuin K., Henkel R. Effect of Eurycoma longifoliaJack (Tongkat ali) extract on human spermatozoa in vitroAndrologia. 2012;44:308–314. doi: 10.1111/j.1439-0272.2012.01282.x. [PubMed] [CrossRef] [Google Scholar]
  122. Noor M.M., Nor A.H.S.M., Hassan L.C. The effect of Eurycoma longifoliaJack (Tongkat Ali) on sexual behaviour and sperm quality in rats. Malays. J. Pharm. Sci. 2004;2:53–60. [Google Scholar]
  123. Mohd Effendy N., Mohamed N., Muhammad N., Naina Mohamad I., Shuid A.N. Eurycoma longifolia: Medicinal plant in the prevention and treatment of male osteoporosis due to androgen deficiency. Evid. Based Complement. Altern. Med. :2012. doi: 10.1155/2012/125761. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  124. Solomon M., Erasmus N., Henkel R. In vivoeffects of Eurycoma longifolia Jack (Tongkat Ali) extract on reproductive functions in the rat. Andrologia. 2014;46:339–348. doi: 10.1111/and.12082. [PubMed] [CrossRef] [Google Scholar]
  125. Tambi M., Imran M., Henkel R. Standardised water-soluble extract of Eurycoma longifolia, Tongkat ali, as testosterone booster for managing men with late-onset hypogonadism? Andrologia. 2012;44:226–230. doi: 10.1111/j.1439-0272.2011.01168.x. [PubMed] [CrossRef] [Google Scholar]
  126. George A., Henkel R. Phytoandrogenic properties of Eurycoma longifoliaas natural alternative to testosterone replacement therapy. Andrologia. 2014;46:708–721. doi: 10.1111/and.12214. [PubMed] [CrossRef] [Google Scholar]
  127. Zanoli P., Zavatti M., Montanari C., Baraldi M. Influence of Eurycoma longifolia on the copulatory activity of sexually sluggish and impotent male rats. J. Ethnopharmacol. 2009;126:308–313. doi: 10.1016/j.jep.2009.08.021. [PubMed] [CrossRef] [Google Scholar]
  128. Ang H.H., Sim M.K. Eurycoma longifoliaincreases sexual motivation in sexually naive male rats. Arch. Pharm. Res. 1998;21:779–781. doi: 10.1007/BF02976776. [PubMed] [CrossRef] [Google Scholar]
  129. Qinna N., Taha H., Matalka K., Badwan A. A new herbal combination, Etana, for enhancing erectile function: An efficacy and safety study in animals. Int. J. Impot. Res. 2009;21:315–320. doi: 10.1038/ijir.2009.18. [PubMed] [CrossRef] [Google Scholar]
  130. Frydrychova S., Opletal L., Macakova K., Lustykova A., Rozkot M., Lipensky J. Effects of herbal preparation on libido and semen quality in boars. Reprod. Domest. Anim. 2011;46:573–578. doi: 10.1111/j.1439-0531.2010.01703.x. [PubMed] [CrossRef] [Google Scholar]
  131. Kotirum S., Ismail S.B., Chaiyakunapruk N. Efficacy of Tongkat Ali (Eurycoma longifolia) on erectile function improvement: Systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2015;23:693–698. doi: 10.1016/j.ctim.2015.07.009. [PubMed] [CrossRef] [Google Scholar]
  132. Henkel R.R., Wang R., Bassett S.H., Chen T., Liu N., Zhu Y., Tambi M.I. Tongkat Ali as a potential herbal supplement for physically active male and female seniors—A pilot study. Phytother. Res. 2014;28:544–550. doi: 10.1002/ptr.5017. [PubMed] [CrossRef] [Google Scholar]
  133. Nadjm B., Behrens R.H. Malaria: An Update for Physicians. Infect. Dis. Clin. North Am. 2012;26:243–259. doi: 10.1016/j.idc.2012.03.010. [PubMed] [CrossRef] [Google Scholar]
  134. World Health Organization “World Malaria Report: 2012. Geneva: WHO, 2012” Fecha Consult. 2015;23:247. [Google Scholar]
  135. Taylor W.R., Hanson J., Turner G.D., White N.J., Dondorp A.M. Respiratory Manifestations of Malaria Lung in Malaria. Chest J. 2012;142:492–505. doi: 10.1378/chest.11-2655. [PubMed] [CrossRef] [Google Scholar]
  136. MAR M.R., Noor Rain A., Zhari I., Zakiah I. Effect of Eurycoma longifoliaextract on the Glutathione level in Plasmodium falciparum infected erythrocytes in vitroTrop. Biomed. 2005;22:155–163. [PubMed] [Google Scholar]
  137. Cancer Statistics? Cancer Research UK. [(accessed on 3 March 2016)]. Available online:
  138. Rubinstein L., Shoemaker R., Paull K., Simon R., Tosini S., Skehan P., Scudiero D., Monks A., Boyd M. Comparison of in vitroanticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J. Natl. Cancer Inst. 1990;82:1113–1117. doi: 10.1093/jnci/82.13.1113. [PubMed] [CrossRef] [Google Scholar]
  139. Ito J., Chang F.R., Wang H.K., Park Y.K., Ikegaki M., Kilgore N., Lee K.H. Anti-AIDS agents. 48. 1 Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis. J. Nat. Prod. 2001;64:1278–1281. doi: 10.1021/np010211x. [PubMed] [CrossRef] [Google Scholar]
  140. Morita H., Kishi E., Takeya K., Itokawa H., Tanaka O. New quassinoids from the roots of Eurycoma longifoliaChem. Lett. 1990;44:749–752. doi: 10.1246/cl.1990.749. [CrossRef] [Google Scholar]
  141. Mahfudh N. Eurycomanone exert antiproliferative activity via apoptosis in hela cells; Proceedings of the International Conference on Mathematics and Natural sciences (ICMNS); Bandung, Indonesia. 29–30 November 2006. [Google Scholar]
  142. Tong K.L., Chan K.L., AbuBakar S., Low B.S., Ma H.Q., Wong P.F. The In Vitroand In Vivo Anti-Cancer Activities of a Standardized Quassinoids Composition from Eurycoma longifolia on LNCaP Human Prostate Cancer Cells. PLoS ONE. 2015;10:e121752. doi: 10.1371/journal.pone.0121752. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  143. Hajjouli S., Chateauvieux S., Teiten M.H., Orlikova B., Schumacher M., Dicato M., Choo C.Y., Diederich M. Eurycomanone and Eurycomanol from Eurycoma longifoliaJack as Regulators of Signaling Pathways Involved in Proliferation, Cell Death and Inflammation. Molecules. 2014;19:14649–14666. doi: 10.3390/molecules190914649. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  144. Ohishi K., Toume K., Arai M.A., Koyano T., Kowithayakorn T., Mizoguchi T., Itoh M., Ishibashi M. 9-Hydroxycanthin-6-one, a β-Carboline Alkaloid from Eurycoma longifolia, Is the First Wnt Signal Inhibitor through Activation of Glycogen Synthase Kinase 3β without Depending on Casein Kinase 1α J. Nat. Prod. 2015;78:1139–1146. doi: 10.1021/acs.jnatprod.5b00153. [PubMed] [CrossRef] [Google Scholar]
  145. Pear W.S., Miller J.P., Xu L., Pui J.C., Soffer B., Quackenbush R.C., Pendergast A.M., Bronson R., Aster J.C., Scott M.L. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood. 1998;92:3780–3792. [PubMed] [Google Scholar]
  146. O’Brien S., Berman E., Devetten M., Network N.C.C. NCCN Clinical Practice Guidelines in Oncology: Chronic Myelogenous Leukemia. 2010. [(accessed on 3 March 2016)]. Version 2. Available online:
  147. Kim D.W., Goh Y.T., Hsiao H.H., Caguioa P.B., Kim D., Kim W.S., Saikia T., Agrawal S., Roy A., Dai D. Clinical profile of dasatinib in Asian and non-Asian patients with chronic myeloid leukemia. Int. J. Hematol. 2009;89:664–672. doi: 10.1007/s12185-009-0326-1. [PubMed] [CrossRef] [Google Scholar]
  148. Druker B.J. STI571 (Gleevec™) as a paradigm for cancer therapy. Trends Mol. Med. 2002;8:S14–S18. doi: 10.1016/S1471-4914(02)02305-5. [PubMed] [CrossRef] [Google Scholar]
  149. Deininger M.W., Goldman J.M., Melo J.V. The molecular biology of chronic myeloid leukemia. Blood. 2000;96:3343–3356. [PubMed] [Google Scholar]
  150. Al-Salahi O.S.A., Ji D., Majid A.M.S.A., Kit-Lam C., Abdullah W.Z., Zaki A., Din S.K.K.J., Yusoff N.M., Majid A.S.A. Anti-tumor activity of Eurycoma longifoliaroot extracts against K-562 cell line: In vitro and in vivo study. PLoS ONE. 2014;9:e83818. doi: 10.1371/journal.pone.0083818. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  151. Tee T.T., Cheah Y.H., Hawariah L.P.A. F16, a fraction from Eurycoma longifoliajack extract, induces apoptosis via a caspase-9-independent manner in MCF-7 cells. Anticancer Res. 2007;27:3425–3430. [PubMed] [Google Scholar]
  152. Tee T.T., Azimahtol H.L.P. Induction of apoptosis by Eurycoma longifoliaJack extracts. Anticancer Res. 2005;25:2205–2213. [PubMed] [Google Scholar]
  153. Chung A.S., Ferrara N. Developmental and pathological angiogenesis. Annu. Rev. Cell. Dev. Biol. 2011;27:563–584. doi: 10.1146/annurev-cellbio-092910-154002. [PubMed] [CrossRef] [Google Scholar]
  154. Herbert S.P., Stainier D.Y. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Boil. 2011;12:551–564. doi: 10.1038/nrm3176. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  155. Goel S., Duda D.G., Xu L., Munn L.L., Boucher Y., Fukumura D., Jain R.K. Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 2011;91:1071–1121. doi: 10.1152/physrev.00038.2010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  156. Frater J.L., Kay N.E., Goolsby C.L., Crawford S.E., Dewald G.W., Peterson L.C. Dysregulated angiogenesis in B-chronic lymphocytic leukemia: Morphologic, immunohistochemical, and flow cytometric evidence. Diagn. Pathol. 2008;3 doi: 10.1186/1746-1596-3-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  157. Cardenas C., Quesada A.R., Medina M.A. Anti-angiogenic and anti-inflammatory properties of kahweol, a coffee diterpene. PLoS ONE. 2011;6:e23407. doi: 10.1371/journal.pone.0023407. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  158. Al-Salahi O.S.A., Kit-Lam C., Majid A.M.S.A., Al-Suede F.S.R., Mohammed Saghir S.A., Abdullah W.Z., Ahamed M.B.K., Yusoff N.M. Anti-angiogenic quassinoid-rich fraction from Eurycoma longifoliamodulates endothelial cell function. Microvasc. Res. 2013;90:30–39. doi: 10.1016/j.mvr.2013.07.007. [PubMed] [CrossRef] [Google Scholar]
  159. Al-Salahi O.S.A., Zaki A.H., Chan K.L., Shah A.M., Al-Hassan F., Abdullah W.Z., Yusoff N.M. In vitroAnti-proliferative and Apoptotic Activities of Eurycoma longifolia Jack (Simaroubaceae) on HL-60 Cell Line. Trop. J. Pharm. Res. 2013;12:57–61. doi: 10.4314/tjpr.v12i1.10. [CrossRef] [Google Scholar]
  160. Nurhanan M., Hawariah L., Ilham A.M., Shukri M. Cytotoxic effects of the root extracts of Eurycoma longifoliaJack. Phytother. Res. 2005;19:994–996. doi: 10.1002/ptr.1759. [PubMed] [CrossRef] [Google Scholar]
  161. Razak M.F.A., Aidoo K.E., Candlish A.G. Mutagenic and cytotoxic properties of three herbal plants from Southeast Asia. Trop. Biomed. 2007;24:49–59. [PubMed] [Google Scholar]
  162. Farouk A.E., Benafri A. Antibacterial activity of Eurycoma longifoliaJack. A Malaysian medicinal plant. Saudi Med. J. 2007;28:1422–1424. [PubMed] [Google Scholar]
  163. Farouk A., Nawi M., Hassan S. Antibacterial peptides from Euycoma longifolia(Tongkat Ali) and Labisia pumila (Kacip Fatimah) leaves in Malaysia. Sci. Brun. 2008;9:55–63. [Google Scholar]
  164. Kong C., Yehye W.A., Rahman N.A., Tan M.W., Nathan S. Discovery of potential anti-infectives against Staphylococcus aureus using a Caenorhabditis elegans infection model. BMC Complement. Altern. Med. 2014;14 doi: 10.1186/1472-6882-14-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  165. Hai Dang N., Choo Y.Y., Tien Dat N., Hoai Nam N., Van Minh C., Lee J.H. 7-Methoxy-(9H-β-Carbolin-1-il)-(E)-1-Propenoic Acid, a β-Carboline Alkaloid From Eurycoma longifolia, Exhibits Anti-Inflammatory Effects by Activating the Nrf2/Heme Oxygenase-1 Pathway. J. Cell. Biochem. 2015;117:659–670. doi: 10.1002/jcb.25315. [PubMed] [CrossRef] [Google Scholar]
  166. Ang H.H., Cheang H.S. Studies on the anxiolytic activity of Eurycoma longifoliaJack roots in mice. Jpn. J. Pharmacol. 1999;79:497–500. doi: 10.1254/jjp.79.497. [PubMed] [CrossRef] [Google Scholar]
  167. Talbott S.M., Talbott J.A., George A., Pugh M. Effect of Tongkat Ali on stress hormones and psychological mood state in moderately stressed. J. Int. Soc. Sports Nutr. 2013;10 doi: 10.1186/1550-2783-10-28. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  168. Husen R., Pihie A.H.L., Nallappan M. Screening for antihyperglycaemic activity in several local herbs of Malaysia. J. Ethnopharmacol. 2004;95:205–208. doi: 10.1016/j.jep.2004.07.004. [PubMed] [CrossRef] [Google Scholar]
  169. Lahrita L., Kato E., Kawabata J. Uncovering potential of Indonesian medicinal plants on glucose uptake enhancement and lipid suppression in 3T3-L1 adipocytes. J. Ethnopharmacol. 2015;168:229–236. doi: 10.1016/j.jep.2015.03.082. [PubMed] [CrossRef] [Google Scholar]
  170. Kamel H.K. Male Osteoporosis. Drugs Aging. 2005;22:741–748. doi: 10.2165/00002512-200522090-00003. [PubMed] [CrossRef] [Google Scholar]
  171. Melton L.J., Atkinson E.J., O’Connor M.K., O’Fallon W.M., Riggs B.L. Bone density and fracture risk in men. J. Bone Miner. Res. 1998;13:1915–1923. doi: 10.1359/jbmr.1998.13.12.1915. [PubMed] [CrossRef] [Google Scholar]
  172. Melton L.J., Chrischilles E.A., Cooper C., Lane A.W., Riggs B.L. How many women have osteoporosis? J. Bone Miner. Res. 2005;20:886–892. doi: 10.1359/jbmr.2005.20.5.886. [PubMed] [CrossRef] [Google Scholar]
  173. Kanis J., Johnell O., Oden A., Sernbo I., Redlund-Johnell I., Dawson A., De Laet C., Jonsson B. Long-term risk of osteoporotic fracture in Malmö Osteoporos. Int. 2000;11:669–674. doi: 10.1007/s001980070064. [PubMed] [CrossRef] [Google Scholar]
  174. Shuid A.N., Abu Bakar M.F., Abdul Shukor T.A., Muhammad N., Mohamed N., Soelaiman I.N. The anti-osteoporotic effect of Eurycoma longifoliain aged orchidectomised rat model. Aging Male. 2011;14:150–154. doi: 10.3109/13685538.2010.511327. [PubMed] [CrossRef] [Google Scholar]
  175. Ali J., Saad J. Ph.D. Thesis.University of Malaysia; Kuala Lumpur, Malaysia: 1993. Biochemical Effect of Eurycoma longifolia Jack on the Sexual Behavior, Fertility, Sex Hormone, and Glycolysis. [Google Scholar]
  176. Hooi Hoon A., Cheang H.S., Yusof A.P.M. Effects of Eurycoma longifoliaJack (Tongkat Ali) on the initiation of sexual performance of inexperienced castrated male rats. Exp. Anim. 2000;49:35–38. [PubMed] [Google Scholar]
  177. Moreira S.G., Jr., Brannigan R.E., Spitz A., Orejuela F.J., Lipshultz L.I., Kim E.D. Side-effect profile of sildenafil citrate (Viagra) in clinical practice. Urology. 2000;56:474–476. doi: 10.1016/S0090-4295(00)00649-X. [PubMed] [CrossRef] [Google Scholar]
  178. Sahelian R. Natural Sex Boosters: Supplements That Enhance Stamina, Sensation, and Sexuality for Men and Women.Square One Publishers, Inc.; New York, NY, USA: 2003. [Google Scholar]
  179. Halliwell B., Gutteridge J.M. Free Radicals in Biology and Medicine.Volume 3 Oxford university press Oxford; Croydon, UK: 1999. [Google Scholar]
  180. Wauquier F., Leotoing L., Coxam V., Guicheux J., Wittrant Y. Oxidative stress in bone remodelling and disease. Trends Mol. Med. 2009;15:468–477. doi: 10.1016/j.molmed.2009.08.004. [PubMed] [CrossRef] [Google Scholar]
  181. Saadiah Abdul Razak H., Shuid A.N., Naina Mohamed I. Combined effects of Eurycoma longifoliaand testosterone on androgen-deficient osteoporosis in a male rat model. Evid. Based Complement. Altern. Med. 2012;2012 doi: 10.1155/2012/872406. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  182. Shuid A.N., El-arabi E., Effendy N.M., Razak H.S.A., Muhammad N., Mohamed N., Soelaiman I.N. Eurycoma longifoliaupregulates osteoprotegerin gene expression in androgen-deficient osteoporosis rat model. BMC Complement. Altern. Med. 2012;12 doi: 10.1186/1472-6882-12-152. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  183. Abdulghani M., Hussin A.H., Sulaiman S.A., Chan K.L. The ameliorative effects of Eurycoma longifoliaJack on testosterone-induced reproductive disorders in female rats. Reprod. Biol. 2012;12:247–255. doi: 10.1016/S1642-431X(12)60089-8. [PubMed] [CrossRef] [Google Scholar]
  184. Muhamad A.S., Keong C.C., Kiew O.F., Abdullah M.R. Eurycoma longifoliaJack: Medicinal properties and its effect on endurance exercise performance. Asian J. Exerc. Sports Sc. 2009;6:39–43. [Google Scholar]
  185. Ulbricht C., Conquer J., Flanagan K., Isaac R., Rusie E., Windsor R.C. An Evidence-Based Systematic Review of Tongkat Ali (Eurycoma longifolia) by the Natural Standard Research Collaboration. J. Diet. Suppl. 2013;10:54–83. doi: 10.3109/19390211.2012.761467. [PubMed] [CrossRef] [Google Scholar]
  186. Jantan I., Zaki Z., Ahmad A., Ahmad R. Evaluation of smoke from mosquito coils containing Malaysian plants against Aedes aegypti. Fitoterapia. 1999;70:237–243. doi: 10.1016/S0367-326X(99)00026-X. [CrossRef] [Google Scholar]
  187. Girish S., Kumar S., Aminudin N. Tongkat Ali (Eurycoma longifolia): A possible therapeutic candidate against Blastocystis sp. Parasites Vectors. 2015;8 doi: 10.1186/s13071-015-0942-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  188. Ang H.H., Cheang H.S. Effects of Eurycoma longifolia Jack on laevator ani muscle in both uncastrated and Testosterone-Stimulated castrated intact male rats. Arch. Pharmacal Res. 2001;24:437–440. doi: 10.1007/BF02975191. [PubMed] [CrossRef] [Google Scholar]
  189. Qodriyah H., Asmadi A. Eurycoma longifoliain Radix (TM) for the Treatment of Ethanol-induced Gastric Lesion in Rats. Pak. J. Biol. Sci. 2013;16 doi: 10.3923/pjbs.2013.1815.1818. [PubMed] [CrossRef] [Google Scholar]
  190. Bich D., Chung D., Chuong B., Dong N., Dam D., Hien P., Lo V., Mai P., Man P., Nhu D. The medicinal plants and animals in Vietnam. Hanoi Sci. Technol. Publ. House Hanoi. 2004;1:224. [Google Scholar]
  191. Chan K.L., Low B.S., San Ho D.S. Polar Organic Extract of Eurycoma longifolia. 20100221370 A1. U.S. Patent. 2010 Sep 2;
  192. Pan Y., Tiong K.H., Abd-Rashid B.A., Ismail Z., Ismail R., Mak J.W., Ong C.E. Effect of eurycomanone on cytochrome P450 isoforms CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2E1 and CYP3A4 in vitroJ. Nat. Med. 2014;68:402–406. doi: 10.1007/s11418-013-0794-8. [PubMed] [CrossRef] [Google Scholar]
  193. Han Y.M., Kim I.S., Rehman S.U., Choe K., Yoo H.H. In Vitro Evaluation of the Effects of Eurycoma longifoliaExtract on CYP-Mediated Drug Metabolism. Evid. Based Complement. Altern. Med. 2015;2015 doi: 10.1155/2015/631329. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  194. Satayavivad J., Noppamas S., Aimon S., Yodhathai T. Toxicological and antimalaria activity of Eurycoma longifoliaJack extracts in mice. Thai J. Phytopharm. 1998;5:14–27. [Google Scholar]
  195. Shuid A., Siang L., Chin T., Muhammad N., Mohamed N., Soelaiman I. Acute and Subacute Toxicity Studies of Eurycoma longifoliain Male Rats. Int. J. Pharm. 2011;7:641–646. doi: 10.3923/ijp.2011.641.646. [CrossRef] [Google Scholar]
  196. Choudhary Y.K., Bommu P., Ming Y.K., Zulkawi N.B. Acute, sub-acute, and subchronic 90-days toxicity of Eurycoma longifoliaaqueous extract (Physta) in wistar rats. Int. J. Pharm. Pharm. Sci. 2012;4:232–238. [Google Scholar]
  197. Bhasin S., Cunningham G.R., Hayes F.J., Matsumoto A.M., Snyder P.J., Swerdloff R.S., Montori V.M. Testosterone therapy in men with androgen deficiency syndromes: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2010;95:2536–2559. doi: 10.1210/jc.2009-2354. [PubMed] [CrossRef] [Google Scholar]
  198. Li C.H., Liao J.W., Liao P.L., Huang W.K., Tse L.S., Lin C.H., Kang J.J., Cheng Y.W. Evaluation of Acute 13-Week Subchronic Toxicity and Genotoxicity of the Powdered Root of Tongkat Ali (Eurycoma longifoliaJack) Evid. Based Complement. Altern. Med. 2013;2013 doi: 10.1155/2013/102987. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  199. Hamoud H., Qamar U. Effect of long-term use of Eurycoma longifoliaJack on the pancreas in rats. Histol. Assess. 2013;2:22–25. [Google Scholar]
  200. Low B.S., Das P.K., Chan K.L. Acute, Reproductive Toxicity and Two-generation Teratology Studies of a Standardized Quassinoid-rich Extract of Eurycoma longifoliaJack in Sprague-Dawley Rats. Phytother. Res. 2014;28:1022–1029. doi: 10.1002/ptr.5094. [PubMed] [CrossRef] [Google Scholar]
  201. Food and Drug Administration Guidance for Industry, Estimating the Maximum Safe Starting Dose in Initial Critical Trials for Therapeutics in Adult Healthy Volunteers. [(accessed on 3 March 2016)]; Available online:…/Guidances/UCM078932.pdf.
  202. Salman S., Amrah S., Wahab M., Ismail Z., Ismail R., Yuen K., Gan S. Modification of propranolol’s bioavailability by Eurycoma longifoliawater-based extract. J. Clin. Pharm. Ther. 2010;35:691–696. doi: 10.1111/j.1365-2710.2009.01147.x. [PubMed] [CrossRef] [Google Scholar]
  203. Jellin J.M., Batz F., Hitchens K. Natural Medicines Comprehensive Database.Therapeutic Research Faculty; Stockton, CA, USA: 2016. [Google Scholar]
  204. Bramwell D. How many plant species are there? Plant Talk. 2002;28:32–34. [Google Scholar]
  205. Verpoorte R., van der Heijden R., Memelink J. Engineering the plant cell factory for secondary metabolite production. Transgenic Res. 2000;9:323–343. doi: 10.1023/A:1008966404981. [PubMed] [CrossRef] [Google Scholar]
  206. Wolfender J.L., Ndjoko K., Hostettmann K. Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectrometry: A powerful combination for the on-line structural investigation of plant metabolites. J. Chromatogr. 2003;1000:437–455. doi: 10.1016/S0021-9673(03)00303-0. [PubMed] [CrossRef] [Google Scholar]
  207. Vuorela P., Leinonen M., Saikku P., Tammela P., Wennberg T., Vuorela H. Natural products in the process of finding new drug candidates. Curr. Med. Chem. 2004;11:1375–1389. doi: 10.2174/0929867043365116. [PubMed] [CrossRef] [Google Scholar]


Disclaimer: The content published on this site is for educational purposes and is not intended to provide any form of medical advice or recommendations to consume medication, drugs, traditional medicine, or herbal supplement brands. By reading this, the sole responsibility and decision lie on the reader to perform their own assessment and / or to arrive at an informed decision based on publicly available information. Reading the content published on this website means you are aware of the risks involved in purchasing any of the products or brands mentioned in this article. We highly recommend you consult your nearest doctor before making any purchase from this website or any other websites or social media platforms.